

Guidelines on Ecosystem Restoration

Chisinau, Moldova ◆ 13 September 2012

Thierry Lucas, UNEP Brussels

We abuse land because we regard it as a commodity belonging to us. When we see land as a community to which we belong, we may begin to use it with love and respect.

- Aldo Leopold, in "A Sand County Almanac" (1949)

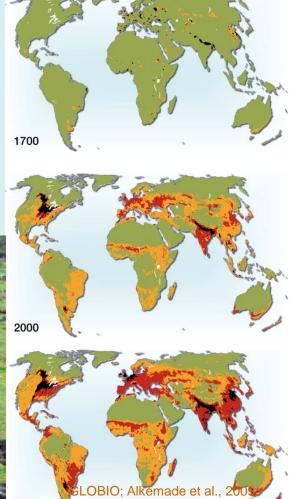
Main reference

Guidelines for Developing and Managing Ecological Restoration Projects

Society for Ecological Restoration International Andre Clewell, John Rieger, and John Munro (2nd Edition, December 2005) copyright 2005

For more information,

http://www.ser.org/content/guidelines_ecological_restoration.asp


Introduction

2050

Biodiversity, as ratio of species abundance before human impacts

High impacts 0 - 25
High-medium impacts 25 - 50
Medium-low impacts 50 - 75
Low impacts 75 - 100 %

Mean species abundance (%)

Phases of restoration projects

- > Assess the needs
- Build capacity
- > Planning
- > Implementation
- Evaluation and Publicity

Assess the needs/feasibility Conceptual Planning

- Identify the project site location, its boundaries and landowners
- Assess the need for ecological restoration, the kind of ecosystems to be restored
- Identify restoration goals:
 - Recovery of a degraded or damaged ecosystem to former state
 - Replacement of destroyed one with same kind
 - Transformation
 - Substitution

Examples of Goals and Objectives

GOAL

Restore a Pontine oak ecosystem to a condition of ecological integrity (as described by historic accounts, existing *reference ecosystems*, and professional opinion).

OBJECTIVES

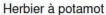
- Remove specified exotic species to below a certain percentage of ground cover (specify time-frame)>
- Plant native plants (specify type and number, time-frame)
- Re-introduce native butterflies
- Use externalities (sheep, fire, ...) to control IAS growth

Assess the needs/feasibility Conceptual Planning

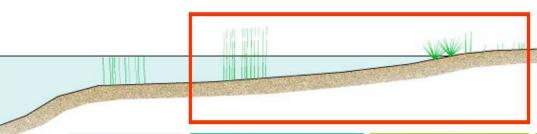
- ► Identify physical site conditions in need of repair, list the kinds of biotic interventions needed
- Document project site conditions, biota and site history leading to the need for restoration

History leading to a new ecosystem

History: reed beds have disappeared


after a new dam was built

Biotic inventory


Scirpe rescapés

Scirpaie en Saône

Scirpe maritime

Herbiers

(Potamogeton nodosus et Sparganium emersum)

Potamogeton perfoliatus

Roselière riveraine

(Scirpaie), (Glycéraie)

Schoenoplectus lacustris

Sparganium errectum

Parvoroselière

(cariçaie)

(Oenantion aquaticae)

Butomus umbellatus

Bolboschoenus maritimus subsp cymosus

Annuelles

(Chenopodion rubri)

Mégaphorbiaie

(Calystegion sepium)

Transect théorique

Raphaël ZUMBIEHL, Zoom

Phases of restoration projects

- > Assess the needs
- Build capacity
- > Planning
- > Implementation
- Evaluation and Publicity

Build Capacity & Preliminary Tasks

- ► Identify the needs for manpower, equipment, biotic resources, and project-funding sources
- Address legal constraints (permits, contract constraints if conservation banking)
- Based on project duration, plan long-term protection and management

It can involve heavy techniques...

Build Capacity & Preliminary Tasks

- Appoint the restoration team, nominate a practitioner (technician)
- Prepare a budget for preliminary tasks
- ► Establish the reference ecosystem (see next slide)

Establish the reference ecosystem

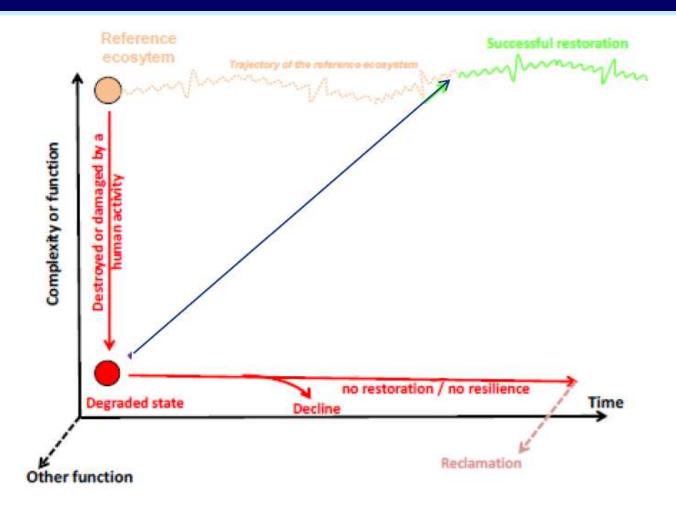


Figure 3: Modified from Hobbs & Norton 1996 and Clewell & Aronson 2007 (Buisson, Barnaud, Aronson & Dutoit unpublished). Schematic representation of the trajectory of a natural or semi-natural ecosystem over time. Several functions may appear (multi-dimensional – here 3D) (light pink curve: reference ecosystem trajectory), its advanced deterioration (red) and different possible states. Hatched arrows create the 3D.

Build Capacity & Preliminary Tasks

- ► Establish liaison with the public, publicize the project
- Involve stakeholders at large
- Train personnel

Phases of restoration projects

- > Assess the needs
- Build capacity
- Planning
- > Implementation
- Evaluation and Publicity

Planning

- ► Gather information for key species, assess effectiveness of restoration methods
- ► Review ecosystem goals (realistic?) and prepare a list of objectives to achieve them

Planning

- Describe actions to implement to achieve each objective
- Prepare performance standards and monitoring protocols
- Schedule the tasks from action list
- Provide equipment, supplies, biotic resources
- Prepare a budget for the implementation

Passive restoration

Phases of restoration projects

- > Assess the needs
- Build capacity
- > Planning
- Implementation
- Evaluation and Publicity

Implementation

- Mark boundaries and work areas
- Install permanent monitoring features
- Implement restoration tasks

The removal of Smelt Hill Dam in Falmouth, Maine, and other aquatic ecosystem restoration projects are conducted to restore aquatic ecosystems for fish and wildlife.

© US Army Corps of Engineers

Implementation

- Protect the project site
- Revisit the project site often to take adaptive measures

A fence encloses and protects rare species from over-grazing

© Parks Canada / D. Gummer

Phases of restoration projects

- > Assess the needs
- Build capacity
- > Planning
- > Implementation
- Evaluation and Publicity

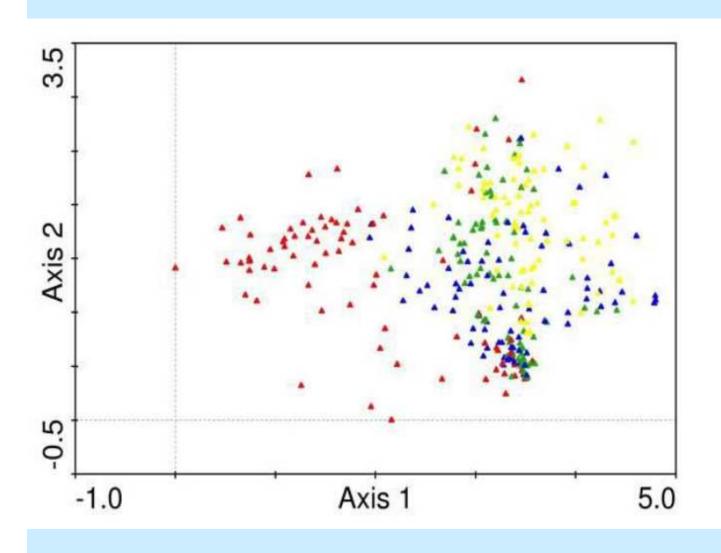
Evaluate and publicize

- Assess monitoring data
- Conduct an ecological evaluation

Publicize the work achieved

Before removal of invasive species in Fort Rodd Hill National Historic Site

© Parks Canada


After removal of invasive species in Fort Rodd Hill National Historic Site

© Parks Canada

Evaluation

- ▲ 2-4 years
- △ 5-8 years
- ▲ 10-15 years
- Reference

Planning exercice

Take the same example than exercise 1 - a prioritized location to restore in your country

- ► Develop realistic ecosystem goals and prepare a list of objectives to achieve them
- ► Describe actions to implement to achieve each objective
- Describe performance standards and monitoring protocols

Prepare (20-30 min) and present to the group