Opportunities and Challenges in the implementation of PES for agrobiodiversity

Unai Pascual (<u>up211@cam.ac.uk</u>)

Cambridge University and Basque Centre for Climate Change

+ Ulf Narloch (Univ Cambridge), Adam Drucker (Bioversity International)

Outline (two parts)

PART 1

- 1. Mainstream PES Vs. alternative views
- 2. Political economy of equity-fairness vs. efficiency

PART 2

- 3. The problem of Ag-Bio loss
- 4. PACS case study
- 5. Results/Conclusion

PART I: Challenges of mainstream PES

1. Intro. Mainstream notion of PES

- Mainstream definition of PES: voluntary transaction where a well-defined environmental service (ES) - or a land-use likely to secure that ES Is being "bought" by a (min. one) ES buyer from a (min. one) ES provider if and only if the ES provider continuously secures ES provision (conditionality) (Wunder)
- Implementation emphasis: reducing transaction costs, allocating entitlements and establishing bargaining processes > privateprivate ideal for permanence and efficiency.
- Distinctive separation between efficiency and equity considerations → Poverty reduction as potential positive side effect → Mixed evidence of the effects of PES schemes on poverty (much received wisdom around and little systematic research)

Mainstream PES

- Uncertainty due to bio-complexity → contracts negotiated on scientific received wisdom (faith) → increase scientific evidence of ES increases transaction costs → PES too costly.
- <u>Equity/Fairness</u> perceptions as key factors determining the political feasibility of PES.
- PES may 'crowd-out' local rules and social norms, affecting 'intrinsic motivations' for environmental protection behavior
 → PES more about co-investment (land tenure, social capital)
- <u>intermediaries as 'dominant agents</u>': tend to define traded ES, set conditions among actors, influence P of the exchange

The role of the intermediary

2. Equity – Fairness vs Efficiency?

- Equity is linked to ideas of fairness and justice
- •The concept of fairness is dynamically constructed based on local meanings
- •There is no rational way to prefer, a priori, one fairness criterion over another because all of them are equally justifiable and legitimate
- •Each group of stakeholders is motivated to construe justice in their own favor.

Example of fairness criteria

PES
design
favouring
equity
concerns

Maxi-min

Common goods

Egalitarian

Status quo

Expected provision

Actual provision

Compensation

PES design favouring efficiency concerns

3. The problem: Policy failure

- The costs of implementing conservation programmes may be relatively small → We are losing Ag-Bio for the lack of relatively little conservation funding
 - Expected marginal value of exploiting an individual ex-situ accession in commercial agriculture justifies the cost of conserving it in a gene bank.
 - Releases of improved varieties by plant breeding programs have generated economic returns that far outweigh the costs of investment.
 - Costs = < 1%? of agricultural subsidies (OECD = \$260 billion p.a.)

... and market failure

- Ag-bio: The privately "capturable" value include
 - <u>Direct use value</u>: Food production, animal feed, medicine, fibre and fuel, seeds for the next season, etc.
 - Indirect use value: Farmers use Ag-Bio to spread the risk of ag. production shocks due to weather variability or pest and diseases.
- Ag-Bio: Public values include
 - Cultural values, local identity and traditional knowledge
 - Option values associated may be extremely high
 - Society better adapted to confronting future challenges, such as new disease epidemics and climate change
- But farmers not rewarded for Ag-Bio conservation as positive "global" externality → underinvestment in conservation

What and where to conserve Ag-Bio?

- Ag-Bio requires active maintenance by humans and that the nature of the plant breeding process calls for a broad range of plant genetic resources as inputs into any single successful product.
- In situ Ag-Bio conservation or "in situ museums"?
 - Safe Minimum Standards need to be secured. BUT not enough science about in-situ SMS
 - Combination of conservation criteria possibly needed as evolutionary processes are critical (traditional knowledge, informal seed systems, etc.)
- Spatial scaling:
 - Need to scale up as what may be at risk in one country might not be across the border

Peru – Lake Titicaca

Bolivia - Salar de Uyuni

Quinoa varieties

Quinoa farmer

4. Piloting first PACS

- What needs to be conserved? Quinoa landraces 'at risk' or in 'critical' situation + morphological dissimilarity analysis
 - Risk criteria: area under cultivation, number of farmers, level of traditional knowledge, amount of own seed available.
 - Results in targeting 5 quinoa landraces in Bolivia and 4 in Peru

PACS tender

- Small scale pilot: just \$4k per country
- Single-round, sealed-bid auction
- 38 community-based organisations (CBOs) invited
 - 12/18 CBOs participated in Bolivia and 13/20 CBOs in Peru
- CBOs free to determine:
 - Which targeted landrace to conserve, land area for conservation, number of participating farmers in the CBO and requested compensation
- Criteria for allocating budget: total land area across CBOs, Total number of farmers, Total number of communities, weighted combination

5. Preliminary results

- Bolivia (Peru) is more cost-effective in allocating land for conservation (number of farmers) across landraces
- Most unequal distribution in terms of payments received by CBOs under the cost effective objective of:
 - \$/participating farmers in Bolivia. Gini: 0.75
 - \$/ha under conservation in Peru. Gini: 0.80
- Multi-criteria weighting (0.4 n. farmers, 0.4 land, 0.2 n.
 CBOs) → most equitable distribution (Gini: 0.37 Bolivia, 0.57 Peru).

Example of trade-offs (Bolivia)

Selection criteria (aim)	Aim 1: Max avg (across landraces) cost effectiveness (\$/ha)	Aim 2: Max. avg cost effectiveness (\$/farmer)	Aim 3: Max. avg. cost effectiveness (\$/CBO)	Aim: Max. Weighted avg. cost effectiveness across criteria (e.g., 0.4, 0.4, 0.2)
Total area (outcome)	2.9 ha	0.6 ha	2.6 ha	2.6 ha.
Total n. Farmers (outcome)	12 farmers	25 farmers	16 farmers	16 farmers
Total n. CBOs (outcome)	4 CBOs	5 CBOs	8 CBOs	7 CBOs

Tradeoffs between cost-effectiveness criteria and activity outcomes

—Aim: Max avg. cost effectiveness in terms of \$/ha

—Aim: Max. avg cost effectiveness in terms of \$/farmer

—Aim: Max. avg. cost effectiveness in terms of \$/CBO

Total n. CBOs (outcome)

Max: 8 CBOs

Max: 25 farmers

Conclusions

- Equity Efficiency tradeoffs in PES are real (!)
- Need to move beyond mainstream PES but can use cost effective instruments (e.g., tenders)
- Can agrobiodiversity conservation use PES?
 Possibly.
- PACS needs scientific evidence (SMS) to decide what conservation activities to target, when, where and how.
- Promising avenue of research need to devise PACS to support co-evolution of PGRs.

Thank you.